Near-infrared-activated anticancer platinum(IV) complexes directly photooxidize biomolecules in an oxygen-independent manner (2024)

  • Monro, S. et al. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities and highlights from the development of TLD1433. Chem. Rev. 119, 797–828 (2018).

    Article PubMed PubMed Central Google Scholar

  • Farrer, N. J., Salassa, L. & Sadler, P. J. Photoactivated chÿemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans. 2009, 10690–10701 (2009).

    Article Google Scholar

  • Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article PubMed Google Scholar

  • Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011).

    Article PubMed PubMed Central Google Scholar

  • Celli, J. P. et al. Imaging and photodynamic therapy: mechanisms, monitoring and optimization. Chem. Rev. 110, 2795–2838 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  • McFarland, S. A., Mandel, A., Dumoulin-White, R. & Gasser, G. Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology? Curr. Opin. Chem. Biol. 56, 23–27 (2020).

    Article CAS PubMed Google Scholar

  • Du, J. et al. Enhanced photodynamic therapy for overcoming tumor hypoxia: from microenvironment regulation to photosensitizer innovation. Coord. Chem. Rev. 427, 213604 (2021).

    Article CAS Google Scholar

  • Baptista, M. S. et al. Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem. Photobiol. 93, 912–919 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Allison, R. R. & Sibata, C. H. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn. Ther. 7, 61–75 (2010).

    Article CAS PubMed Google Scholar

  • Heinemann, F., Karges, J. & Gasser, G. Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc. Chem. Res. 50, 2727–2736 (2017).

    Article CAS PubMed Google Scholar

  • Dewaele, M. et al. Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. J. Cell. Mol. Med. 15, 1402–1414 (2011).

    Article CAS PubMed Google Scholar

  • Persi, E. et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat. Commun. 9, 2997 (2018).

    Article PubMed PubMed Central Google Scholar

  • Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).

    Article CAS PubMed Google Scholar

  • Pawlicki, M., Collins, H. A., Denning, R. G. & Anderson, H. L. Two‐photon absorption and the design of two‐photon dyes. Angew. Chem. Int. Ed. 48, 3244–3266 (2009).

    Article CAS Google Scholar

  • Imberti, C., Zhang, P., Huang, H. & Sadler, P. J. New designs for phototherapeutic transition metal complexes. Angew. Chem. Int. Ed. 59, 61–73 (2020).

    Article CAS Google Scholar

  • Wexselblatt, E., Yavin, E. & Gibson, D. Platinum(IV) prodrugs with haloacetato ligands in the axial positions can undergo hydrolysis under biologically relevant conditions. Angew. Chem. Int. Ed. 52, 6059–6062 (2013).

    Article CAS Google Scholar

  • Deng, Z. et al. A photocaged, water-oxidizing, and nucleolus-targeted Pt(IV) complex with a distinct anticancer mechanism. J. Am. Chem. Soc. 142, 7803–7812 (2020).

    Article CAS PubMed Google Scholar

  • Wong, D. Y. Q., Lim, J. H. & Ang, W. H. Induction of targeted necrosis with HER2-targeted platinum(IV) anticancer prodrugs. Chem. Sci. 6, 3051–3056 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  • To, W. P., Liu, Y., Lau, T. C. & Che, C. M. A robust palladium(II)-porphyrin complex as catalyst for visible light induced oxidative C-H functionalization. Chem. Eur. J. 19, 5654–5664 (2013).

    Article CAS PubMed Google Scholar

  • Yang, X. et al. Characterization of G‐quadruplex/hemin peroxidase: substrate specificity and inactivation kinetics. Chem. Eur. J. 17, 14475–14484 (2011).

    Article CAS PubMed Google Scholar

  • Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article PubMed Google Scholar

  • Lytle, N. K., Barber, A. G. & Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nat. Rev. Cancer 18, 669–680 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Li, X., Kwon, N., Guo, T., Liu, Z. & Yoon, J. Innovative strategies for hypoxic‐tumor photodynamic therapy. Angew. Chem. Int. Ed. 57, 11522–11531 (2018).

    Article CAS Google Scholar

  • Stamati, I. et al. Novel photosensitisers derived from pyropheophorbide-a: uptake by cells and photodynamic efficiency in vitro. Photochem. Photobiol. Sci. 9, 1033–1041 (2010).

    Article CAS PubMed Google Scholar

  • Mandl, J., Mészáros, T., Bánhegyi, G. & Csala, M. Minireview: endoplasmic reticulum stress: control in protein, lipid and signal homeostasis. Mol. Endocrinol. 27, 384–393 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Lu, J. & Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 66, 75–87 (2014).

    Article CAS PubMed Google Scholar

  • Clarke, H. J., Chambers, J. E., Liniker, E. & Marciniak, S. J. Endoplasmic reticulum stress in malignancy. Cancer Cell 25, 563–573 (2014).

    Article CAS PubMed Google Scholar

  • Steinegger, A., Wolfbeis, O. S. & Borisov, S. M. Optical sensing and imaging of pH values: spectroscopies, materials and applications. Chem. Rev. 120, 12357–12489 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article PubMed PubMed Central Google Scholar

  • Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell death assays for drug discovery. Nat. Rev. Drug Discov. 10, 221–237 (2011).

    Article CAS PubMed Google Scholar

  • Li, J. et al. Ferroptosis: past, present and future. Cell Death Dis. 11, 88 (2020).

    Article PubMed PubMed Central Google Scholar

  • Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Central Sci. 3, 232–243 (2017).

    Article CAS Google Scholar

  • Wang, B. et al. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 6, 94 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery and Pt(IV) prodrugs. Chem. Rev. 116, 3436–3486 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article CAS PubMed Google Scholar

  • Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article CAS PubMed Google Scholar

  • Tao, K., Fang, M., Alroy, J. & Sahagian, G. G. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8, 228 (2008).

    Article PubMed PubMed Central Google Scholar

  • Ouzounova, M. et al. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat. Commun. 8, 14979 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Hunter, K. W. Jr Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp. Mol. Pathol. 82, 12–24 (2007).

    Article PubMed Google Scholar

  • Dierge, E. et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701–1715 (2021).

    Article CAS PubMed Google Scholar

  • Farrer, N. J. et al. A potent trans‐diimine platinum anticancer complex photoactivated by visible light. Angew. Chem. Int. Ed. 49, 8905–8908 (2010).

    Article CAS Google Scholar

  • Wang, Z. et al. Phorbiplatin, a highly potent Pt(IV) antitumor prodrug that can be controllably activated by red light. Chem 5, 3151–3165 (2019).

    Article CAS Google Scholar

  • Vichai, V. & Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1, 1112–1116 (2006).

    Article CAS PubMed Google Scholar

  • Near-infrared-activated anticancer platinum(IV) complexes directly photooxidize biomolecules in an oxygen-independent manner (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Neely Ledner

    Last Updated:

    Views: 6233

    Rating: 4.1 / 5 (62 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Neely Ledner

    Birthday: 1998-06-09

    Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

    Phone: +2433516856029

    Job: Central Legal Facilitator

    Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

    Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.